UHV Quick Links

University Of Houston-Victoria

Faculty CV

Name: Alireza Tavakkoli
Position/Title: Assistant Professor
Work Address: University of Houston-Victoria
3007 North Ben Wilson
Victoria, Texas 77901
Work Telephone: 361-570-4848 Work Email: tavakkolia@uhv.edu

Educational Background/Training

  • Ph.D. UNIVERISTY OF NEVADA RENO,  COMPUTER SCIENCE,  2009 
  • M.S. UNIVERISTY OF NEVADA RENO,  COMPUTER SCIENCE,  2006 
  • M.S. SHARIF UNIVERSITY OF TECHNOLOGY,  DIGITAL ELECTRONICS,  2004 
  • B.S. SHARIF UNIVERSITY OF TECHNOLOGY,  ELECTRONICS,  2001 

Relevant Teaching Experience

  • ASSISTANT PROFESSOR, UNIVERISTY OF HOUSTON-VICTORIA (2009 - Now)
  • RESEARCH ASSISTANT, UNIVERSITY OF NEVADA RENO (2005 - 2009)
  • RESEARCH ASSISTANT, SHARIF UNIVERISTY OF TECHNOLOGY (2001 - 2004)

Academic Scholarship/Research/Creative Endeavors

    Articles

  • Tavakkoli, A. , Nicolescu, M. , Bebis, G. & Nicolescu, M. (2009, October). Non-parametric Statistical Background Modeling for Efficient Foreground Region Detection. International Journal of Machine Vision and Applications, 20(6), 395-409.
  • Tavakkoli, A. , Nicolescu, M. , Bebis, G. & Nicolescu, M. (2008, August). A Support Vector Data Description Approach for Background Modeling in Videos with Quasi-Stationary Backgrounds. International Journal of Artificial Intelligence Tools, 17(4), 635-658.
  • Kelley, R. , King, C. , Tavakkoli, A. , Nicolescu, M. , & Nicolescu, M. (2008, June). An Architecture for Understanding Intent using Novel Hidden Markov Formulation. Internationa Journal of Humanoid Robotics, 5(2), 203-224.
  • Proceedings

  • Ambardekar, A. , Tavakkoli, A. , Nicolescu, M. & Nicolescu, M. (2010, July). A Developmental Framework for Visual Learning in Robotics. 14th International Conference on Image Processing, Computer Vision, and Pattern Recognition.
  • Kelley, R. , Tavakkoli, A. , King, C. , Nicolescu, M. , & Nicolescu, M. (2010). Integrating Context into Intent Recognition Systems. 7th International Conference on Informatics in Control, Automation and Robotics.
  • Tavakkoli, A. , Nicolescu, M. & Bebis, G. (2010, December). A Spatio-Spectral Algorithm for Robust and Scalable Object Tracking in Videos. 6th International Conference on Visual Computing.
  • Amayeh, G. , Tavakkoli, A. & Bebis, G. (2009). Accurate and Efficient Computation of Gabor Features in Real-time Applications. 5th International Symposium on Visual Computing.
  • Scalzo, F. , Bebis, G. , Nicolescu, M. , Loss, L. , & Tavakkoli, A. (2008). Feature Fusion Hierarchies for Gender Classification. 19th International Conference on Pattern Recognition.
  • Tavakkoli, A. , Kelley, R. , King, C. , Nicolescu, M. , & Nicolescu, M. (2008). A Visual Tracking Framework for Intent Recognition in Videos. 4th International Symposium on Visual Computing.
  • Tavakkoli, A. , Nicolescu, M. , Nicolescu, M. & Bebis, G. (2008). Incremental SVDD Training: Improving Efficiency of Background Modeling. IASTED Signal and Image Processing Conference,.
  • Kelley, R. , Tavakkoli, A. , King, C. , Nicolescu, M. , & Nicolescu, M. (2008). Understanding Human Intentions via Hidden Markov Models in Autonomous Mobile Robots. 3rd ACM/IEEE International Conference on Human-Robot Interaction.
  • Tavakkoli, A. , Nicolescu, M. , Nicolescu, M. & Bebis, G. (2008). Efficient Background Modeling through Incremental Support Vector Data Description. 19th International Conference on Pattern Recognition.
  • Tavakkoli, A. , Ambardekar, A. , Nicolescu, M. & Luis, S. (2007, December). A Genetic Approach to Training Support Vector Data Descriptors for Background Modeling in Video Data. 3rd International Symposium on Visual Computing, 318-327.
  • Tavakkoli, A. , Kelley, R. , King, C. , Nicolescu, M. , & N, M. (2007, December). A Vision-Based Approach for Intent Recognition. 3rd International Symposium on Visual Computing, 173-182.
  • Amayeh, G. , Kasaei, S. , Bebis, G. , Tavakkoli, A. , & Veropolous, K. (2007, February). Improvements of Zernike Moment Descriptors on Affine Transformed Shapes. International Symposium on Signal Processing and its Applications (ISSPA'07).
  • Tavakkoli, A. , Nicolescu, M. & Bebis, G. (2006, November). A Novelty Detection Approach for Foreground Region Detection in Videos with Quasi-Stationary Backgrounds. 2nd International Symposium on Visual Computing, 40-49.
  • Tavakkoli, A. , Nicolescu, M. & Bebis, G. (2006, August). Robust Recursive Learning for Foreground Region Detection in Videos with Quasi-Stationary Backgrounds. 18th International Conference on Pattern Recognition, 315-318.
  • Tavakkoli, A. , Nicolescu, M. & Bebis, G. (2006, March). Automatic Statistical Object Detection for Visual Surveillance. IEEE Southwest Symposium on Image Analysis and Interpretation, 144-148.
  • Tavakkoli, A. , Nicolescu, M. & Bebis, G. (2005). Automatic Robust Background Modeling using Multivariate Non-Parametric Kernel Density Estimation for Visual Surveillance. 1st International Symposium on Visual Computing, 3804(2), 363-370.

    Books

  • Tavakkoli, A. (2009). Novelty Detection: Approaches and Applications. In Pattern Recognition.